美国和北约在内的多个国家和国际组织已经在积极尝试推动区块链技术在军事领域的应用。C4ISRNET 最新报告指出,美国国防部目前正在评估区块链技术在军事应用中的可行性。美国 2018 年颁布的《国防授权法案》要求国防部对区块链进行全面研究,探讨如何将其应用于军事领域。美国国防高级研究计划局授予美国两家计算机安全公司价值 180 万美元的合同, 用于构建其区块链应用程序Guardtime 无钥签名基础设施KSI,以验证完整性监控系统是否有可能构建一种不可破解的代码形式,研究区块链应用于保护军用卫星、核武器等高度机密数据免遭黑客攻击的潜力,提高关键系统的安全性。高级研究计划局的工程师还在尝试利用区块链技术创建一个黑客无法入侵的安全信息服务系统。
& nbsp; several countries and international organizations, including the United States and NATO, are already actively trying to promote the application of block chain technology in the military field. C4ISRNET’s latest report states that the United States Department of Defense is currently assessing the feasibility of block chain technology in military applications. The US Defense Authorization Act, enacted in 2018, requires the Department of Defense to conduct a comprehensive study of block chains to explore their application in the military field. The US Defense Advanced Research Program has awarded US$ 1.8 million in contracts to two American computer security companies to construct its sector chain application, Guardtime Unkey Signing Infrastructure KSI, to verify that integrity monitoring systems are likely to build an impregnable code form, to study the use of block chains to protect the potential of highly classified data, such as military satellites, nuclear weapons, against hacker attacks, and to enhance the security of critical systems.
北约也对区块链军事化应用表现出浓厚的兴趣。北约通信与信息处举办区块链创新竞赛,寻求发现提高军事后勤、采购和财务效率军事级区块项目;爱沙尼亚和北约正尝试使用区块链技术开发下一代系统,以实现北约网络靶场防御平台的现代化。俄罗斯国防部认为,区块链将有助于军队追踪黑客攻击的来源,并提高数据库的总体安全性,并在俄罗斯时代科技园建立相应的研究实验室,分析如何使用区块链技术来缓解网络安全攻击和支持军事行动。该实验室的首要任务是开发一种智能系统,以检测和防御对重要数据库和武器系统的网络攻击。俄罗斯国防部表示希望建立安全的区块链平台,使网络攻击的痕迹难以隐藏,并跟踪想要进入系统的网络入侵者。
NATO has also shown great interest in the use of block chains for militarization. The NATO Communications and Information Service has organized an innovation competition in block chains, which seeks to identify projects that enhance military logistics, procurement and financial efficiency; Estonia and NATO are attempting to develop a next-generation system using block chain technology to modernize NATO’s cyber range defence platform. The Russian Ministry of Defence believes that block chains will help the military to track the sources of hacker attacks and improve the overall security of databases, and to establish a research laboratory at the Russian-era Science and Technology Park to analyse the use of block chain technologies to mitigate cyber-security attacks and support military operations. The primary task of the laboratory is to develop an intelligent system to detect and defend cyberattacks on critical databases and weapons systems.
区块链式分布式数据存储、点对点传输、共识机制、加密算法等计算机技术的新型应用模式,具有去中心、去信任、集体维护和可靠性数据库等特性,其技术的广泛应用实现了数据分布存储和数据非对称加密的有机结合,目前已在金融、物联网、公共服务、公益慈善、供应链等诸多领域崭露头角。
New applications of computer technology, such as block chain distributed data storage, point-to-point transmission, consensus mechanisms, encryption algorithms, with features such as decentres, detrust, collective maintenance and reliability databases, have resulted in a combination of data distribution storage and asymmetric encryption, and are now emerging in many areas, such as finance, networking, public services, public good philanthropy and supply chains.
区块链本质上是一种分布式记账技术,它具有以下几个特点。一是去中心化。区块链采取分布式计算和存储,不依赖第三方管理机构,不存在中心化管制,任何参与者都是一个节点,每个节点权限对等。二是开放性。区块链技术的基础是开源的,除交易各方的私有信息被加密,区块链的数据对所有人都是公开的,整个系统高度透明。三是独立性。基于协商一致的规范和协议,整个区块链系统不依赖其他第三方,所有节点能够在系统内自动安全地验证、交换数据,不需要任何人为的干预。四是自动化。区块链基于协商一致的规范和协议,能够自动安全地验证和交换数据。五是匿名性。区块链能够在去信任的环境下运行,各区块节点身份信息无需公开或验证,信息可以匿名传递。六是安全性。区块链建立在分散的网络上,每条信息都被记录在块上,而一个块可以覆盖分布于多个节点上的多个副本,每个块通过称为哈希值的唯一代码链接到前一个块。由于区块链中不存在中央管理机构,是一种无中心故障点的系统,因此没有可供黑客攻击的中心点。只要不能掌握全部数据节点的 51%,就无法肆意操控修改网络数据,这使区块链本身变得相对安全,避免了主观人为的数据变更。
The block chain is essentially a distributed accounting technology, which is highly transparent to all. On the basis of consensus norms and protocols, the block chain system is not dependent on other third parties, and all nodes are automatically secure in the system to verify, exchange data, and there is no need for intervention by anyone. Four are automated. The block chain is based on consensus norms and protocols that automatically secure the validation and exchange of data. Five are anonymous. The block chain is capable of operating in a trusted environment, the area node identity information is open to all, the entire system is highly transparent. Three are independent. The whole block chain system is not dependent on other third parties.
区块链体现的技术特性可以很好满足军事领域的一些特定需求。区块链的去中心化特性契合抗毁生存的军事需求;区块链的可追溯不可篡改的特性契合作战指挥的信任需求;区块链透明开放集体参与的特性契合信息安全共享的军事需求。
The technical characteristics of the block chain can well meet some of the specific needs in the military field. The decentralized characteristics of the block chain match the military requirements against the destruction of existence; the confidence needs of the partnership command of the sector chain, which can be traced to non-manufactured characteristics; and the military requirements for the security of information sharing of the characteristics of the block chain, which is transparent and open to collective participation.
网络防御是区块链技术的低成本高回报应用。网络安全要依赖秘密和信任维护安全性,但这二者都无法保证。而区块链的运行与秘密和信任无关。斯诺登就是利用对其管理员身份的信任,复制了多份特权文件,然后篡改了可监控其行为的审计日志。区块链可通过两种方式保护真相。首先,它会将数字事件信息发送给区块链网络上的其他节点,让数字事件得到广泛见证。然后,区块链可利 用共识机制确保这些事件在数据库中永不会被敌方修改,从而保证其安全。区块链还可以增强网络防御的边界安全策略,不仅仅是帮助在边界上修起高墙,而且还可监测高墙以及墙内的一切事物。现代系统的复杂度不断提升,包括武器系统,漏洞越来越多,可检测性越来越差。采用区块链不是要查找漏洞,这无异于大海捞针,而是监控组成待保护系统的每项数字资产。如果针对系统的恶意攻击是针对系统配置的完好性攻击,那么利用区块链,系统中每个构件的配置都进行了镜像,进行了哈希计算,并放到数据库中保护其安全,之后还不断受到监控。对任何配置的任何非计划性修改,不管是修改多小都会被立刻检测出来。
Network defense is a low-cost, high-return application of block chain technology. Network security depends on secrecy and trust to maintain security, but neither of these can be guaranteed. Block chains operate in isolation from secrecy and trust. Snowden uses trust in his administrator's identity to replicate several privileged documents, and then alters audit logs that can monitor his behaviour. Block chains can protect the truth in two ways. First, they send digital event information to other nodes of the block chain network, making digital events widely visible.
虽然网络威胁在不断发展,但对应的网络防御措施却发展缓慢。这种威胁不仅是由于恶意软件和嵌入式计算设备的数量不断增长造成的,而且还在于敌方通过简单窃取数据位数据操纵提供支持的策略。因此,军队要在数据战中取得胜利,需要开发一种能够克服当前策略不足和未来威胁的网络防御模型。区块链技术就提供了这样一种模型,区块链没有采用传统网络安全措施许多有问题的假设条件。首先,区块链是去信任的。区块链假设会受到内外部攻击。其次,区块链具备透明安全性,它不依赖于易出现问题的所谓秘密,而是依赖一种加密数据结构,作为添加附加安全协议的安全基础。最后,区块链是容错的,它们使用算法共识机制协调诚实节点的工作,拒绝不诚实节点。这三个属性让系统设计人员可以重新构思网络空间系统和网络的基础架构。区块链技术在网络防御方面的几种主要形式包括:
The threat is not only due to the growing number of malicious software and embedded computing devices, but also to the strategy of the enemy to support it through simple data manipulation. Thus, in order for the army to succeed in a data war, it is necessary to develop a network defence model capable of overcoming the current lack of strategy and future threats. The block chain technology provides such a model that the block chain does not use many problematic assumptions of traditional network security measures. First, the block chain is trusted.
系统接收到传感器数据后通知指挥方发现威胁,指挥方引导武器系统对威胁发起攻击。这种集中式的系统模式意味着外部攻击者可以对单个漏洞进行攻击,使指挥方和自动化控制器/人类控制员收到错误或欺骗信息, 导致武器系统被恶意操纵或无法响应发现的威胁。
When the system receives sensor data, it informs the commanding party that the threat is detected, and the commanding party directs the weapon system to attack the threat. This centralized model of the system means that an external attacker can attack a single gap, allowing the command party and the automated controller/human controller to receive false or misleading information, leading to a malicious manipulation of the weapon system or its inability to respond to a perceived threat.
数据传输必须通过在分布式系统中大部分节点的验证,才能确认数据来自合法发起者。所有节点都是独立且受到加密技术保护的,因此攻击者必须拥有极其强大的计算能力对所有节点发起同步攻击才有可能成功。可以看出,当节点数量足够多时,系统将变得无法破解。这种模式的唯一缺点在于节点数量增加后,验证数据真实性所需的处理时间也会增加。
Data transmission must be validated by most nodes in the distributed system to confirm that the data came from the legitimate sponsors. All nodes are independent and protected by encryption technology, so that the attacker must have a very strong computing power to launch a synchronized attack on all nodes. As can be seen, when there are enough nodes, the system becomes unbreakable. The only drawback of this pattern is that the processing time required to verify the authenticity of the data will increase as the number of nodes increases.
集群机器人技术可以再由大量的简易物理机器人组成的系统中协调多个机器人。机器人之间的交互以及机器人与环境的交互过程中会出现机器人集群行为,通常出现在人工智能集群领域,以及自然界中昆虫、蚂蚁等易于发生集群行为的生物领域。在军用机器人的使用情况中,多架无人机或机器人并行工作以突破敌方的防御并摧毁目标。
Cluster robotic technology can then coordinate multiple robotics in systems with a large number of simple physical robots. When robotics interact with each other and robots interact with the environment, robotic cluster behaviour occurs, often in artificial intelligence clusters, as well as in biological areas that are prone to cluster behaviour, such as insects and ants, in nature.
集群中个体成员的自主性以及对通信和交互的依赖使其容易受到黑客攻击。集群中每个组成部分之间需要协同通信,意味着群体容易受到外部行动者的攻击。管理大量机器人的主要限制是所谓的全局知识,即不仅要了解附近代理商的情况,还要了解整体环境的情况。
The autonomy of individual cluster members and their dependence on communication and interaction make them vulnerable to hacking. The need for coordinated communication between each component of a cluster means that groups are vulnerable to attacks by external actors. The main limitation in managing a large number of robots is the so-called holistic knowledge, i.e. knowledge of not only the nearby agents but also the overall environment.
为此区块链提供了一种机制来保护集群内的通信和协同。在系统中, 集群中的每个组件都是区块链的一个节点。集群将在内部进行通信验证, 使用一种共同的、去中心化的决策方式来管理系统运行,并向集群的所有组成部分发送全局知识。集群的各个组件可以通过这种方式进行信息共享, 同时保护自身免受赛博攻击。
The block chain provides a mechanism for protecting communications and synergies within clusters. In the system, each component of a cluster is a node in the block chain. The cluster will be validated internally, using a common, decentralized decision-making approach to manage the system and send global knowledge to all components of a cluster. The clusters'components will be able to share information in this way, while protecting themselves from Cyber attacks.
战场上接受信息的有效性和准确性对于作战人员来说至关重要。数字通信的集中管理容易受到网络攻击,会导致作战人员收到欺骗命令或作战计划进展的虚假信息。此外,如果数据网络的某些部分出现突发故障,集中式系统也无法继续保持系统的完整性。
The validity and accuracy of receiving information on the battlefield is crucial for combatants. The central management of digital communications is vulnerable to cyberattacks, which may result in combatants receiving false information about fraudulent orders or progress in their plans.
区块链为上述问题提出了解决方案。通过横向扩展数据分发范围,创建安全的环境,其中任何一个节点的故障都不会影响网络的整体生存能力。此外,通过一个内置的去中心化验证系统,基于区块链的本地安全系统可以确保所有通信和数据传输都受到保护。战场上的作战人员可以确信接收命令的有效性。通过这种方式,区块链可以创建一个韧性的、防黑客的系统,支持数字战争所需的流动性和协调性。
Block chains provide solutions to these problems. By extending the distribution of data horizontally, creating a secure environment in which the failure of any of the nodes does not affect the overall viability of the network. Moreover, through a built-in decentralised certification system, local security systems based on block chains can ensure that all communications and data transmissions are protected. Combatants on the battlefield can be convinced of the validity of receiving orders. In this way, block chains can create a resilient, hack-proof system that supports the mobility and coordination required for digital warfare.
现代军事后勤和供应链涉及了数百个不同的军事和私营机构。由于参与者的数量较多,容易发生摩擦,从而导致故障、成本过高、不准确和错误描述。区块链可以通过提供单一信息来源和智能自动化来应对这些挑战。区块链在军事后勤方面的优势包括提高交付速度、可追溯性、安全性以及降低成本。因此,作战人员可以得到保证,他们收到的物质可以满足其需求,且不用担心供应链被入侵。
Modern military logistics and supply chains involve hundreds of different military and private institutions. The number of participants makes them susceptible to friction, leading to malfunctions, excessive costs, inaccuracies, and misrepresentations.
区块链技术有助于构建自主化、安全的任务指挥与控制体系。将区块链与人工智能和军事物联网相结合,将改变未来的军事指挥控制模式,即从集中战斗控制模式转变为分散控制,至少在单位级别。在未来战场上, 一群军用无人机以分散的方式持续地共享作战数据和决策,作为一个统一的组织运作,不依赖于单一的决策中心,能够在任何伤亡下不丧失作战能力。另一个适合分散指挥的领域会是复杂的火力系统。过去北约海军舰艇一直依赖于一种名为宙斯盾作战系统的集中式武器控制系统,这是一种巧妙而集中的大脑,能够从数十个传感器收集数据,同时协调几种致命武器的火力。虽然它已经过时了,仍然运行良好,但如果决策中心被拆除,它的集中化特征会使它变得很脆弱。一组通过区块链进行协调的自治系统, 可以提供一种更可行的设计,既可以保留协调的优点,又可以消除中央控制固有的漏洞。
Block chain technology helps to build autonomous and secure mission command and control systems. Combining the block chain with artificial intelligence and military objects will change the future model of military command and control, from centralized combat control to decentralized control, at least at the unit level. In the future, a group of military drones continues to share operational data and decision-making in a decentralized manner.
采用区块链技术可以在高度竞争环境中提供弹性通信。在高端冲突中, 军方必须做好应对敌方争夺电磁频谱的准备,特别是针对关键通信系统, 如卫星、水下线缆、战术数据链等。此外,敌方还会尝试操控用于完成杀伤链的数据,对抗这种威胁需要能够安全生成、保护和共享数据,不受敌方行动的影响。而区块链网络就能提供这些能力。
In high-end conflicts, the military must be prepared to respond to enemy competition for the electromagnetic spectrum, especially with regard to critical communication systems such as satellites, underwater cables, tactical data chains, etc. Moreover, the enemy will try to manipulate data used to complete the chain of casualties, a threat that requires the safe generation, protection, and sharing of data against enemy actions.
区块链的分布式存储有效降低了数据集中管理的风险,大大提升了数据安全水平,在军事领域有着广阔的应用前景。但是应该看到,区块链技术在军事领域的应用也不可避免地存在一些问题,必须引起高度重视。
The distributional storage of block chains effectively reduces the risk of centralized data management, significantly improves the level of data security and offers a wide range of applications in the military field. But it should be noted that the application of block chain technology in the military sphere is inevitably problematic and must be given high priority.
区块链在军事应用过程中也面临安全问题。与任何技术一样,安全问题出现在区块链开发人员将需求转化为成品和服务的过程中,代码行、共识机制、通信协议等,都有可能带来可能被恶意利用的漏洞。区块链目前仍然是一项充满差异化的技术:多种协议和编程语言正在并行开发不同的区块链。因此,区块链的开发人员很难获得保护代码所需的经验。区块链在很大程度上依赖于密码学,即安全通信的有效实践,它是建立在需要保护的通信网络和设备之上,传统的信息安全挑战同样影响到区块链。此外, 密码学也是一个不断变化的技术领域,例如量子计算机的发展有望突破多种加密算法。区块链不是在真空中运行,围绕密钥管理、钱包托管和节点补丁等与人有关的不完备的安全实践,在军事应用中也会带来诸多安全问题。安全部署区块链解决方案需要时间,并集成到更广泛的安全的安全生态系统中,该生态系统需要包括由传统网络设备组成的传统信息安全平台。为此,需要将区块链集成到事件管理预案和流程中去,并开始考虑去中心化的业务模型对安全域的影响。
As with any technology, security concerns arise in the process of turning demand into finished goods and services, code lines, consensus mechanisms, communications agreements, etc., are likely to create loopholes that can be used maliciously. Block chains are still a variable technology: multiple protocols and programming languages are developing different blocks in parallel. It is therefore difficult for the developers to gain the experience needed to secure codes. Block chains depend heavily on cryptology, the effective practice of secure communications, which is based on secure communication networks and equipment that require protection, and traditional information security challenges affect the chain as well. In addition, cryptography is a changing technological field, such as the development of quantum computers that is expected to break through multiple encryption algorithms.
区块链在技术层面上还需要实现重大突破。目前区块链应用还处在初创开发阶段,没有直观可用的成熟产品。相对于互联网技术,没有直观可用的成熟产品。相对于互联网技术,人们可以用浏览器、APP 等具体应用程序,实现信息浏览、传递、交换和应用,但区块链还缺乏这类突破性的应用程序,面临高技术门槛的障碍。此外,还有区块的容量问题。由于区块链需要承载复制之前产生的全部信息,下一个区块信息量远远大于之前的区块信息量,这样传递下去,区块写入的信息将会无限增大,带来的军事信息存储、验证和容量问题亟待解决。
Block chains still require major breakthroughs at the technical level. Block chain applications are still in the initial stages of development, with no intuitive and mature products available. There is no intuitive and mature product available relative to Internet technology. Compared to Internet technology, one can access specific applications, such as browsers and APPs, to browse, transmit, exchange, and apply information, but blocks chains lack such breakthrough applications and face barriers to high technology thresholds. In addition, there are block capacity problems.
区块链应用面临竞争性技术的挑战。目前世界军事强国都非常看好区块链技术在军事领域的应用,但也要看到,推动军事转型发展的技术有很多种,哪种技术更方便、更高效,人们就会应用该技术。比如,如果在军事通信领域应用区块链技术,通过发信息的方式是每次发给全网的所有人,但是只有那个有私钥的人才能解密打开信件,这样信息传递的安全性会大大增加。同样,量子通信技术也可以做到,量子通信利用量子纠缠效应进行信息传递,同样具有高效安全的特点,这对于区块链技术的军事应用来说,就具有很强的竞争优势。
For example, when block chain technology is applied in the field of military communications, it is sent to everyone on the whole network, but only the person with the private key can decipher and open the letter, so that the security of the message can be greatly enhanced. Similarly, quantum communications technology can be used to transmit the information using quantum entanglement, which is also an efficient security feature, for example, for the military application of block chain technology.
区块链应用面临网络规模和信息管控的两难选择。区块链应用需要运行在去中心化的对等网络之上,一定数量的网络节点是系统运行的基本前提,网络节点规模越大,区块链越不容易被操控或攻破,系统也就越安全可靠。大部分的军事信息通信通常具有密级,要求在一定范围内可控,虽然可以使用非对称加密技术实现较强的信息安全性,但仍然面临信息密级与承载网络密级之间不适配的问题。此外,在对等网络中没有中心服务器的概念,节点之间点对点即可完成事务处理,信息流转是自主分散的,区块链的军事应用面临着信息自由交互与集中管控之间的矛盾。信息集中管控难题的根源是区块链技术去中心化的特质,相关应用落地必须符合军事领域的现行制度和政策,操作难度很大。
Block-chain applications face the dilemma of network size and information control. Block-chain applications need to operate on decentralised peer networks. A certain number of network nodes are a basic prerequisite for the system to operate. The larger the network nodes, the less easy they to manipulate or break, the more secure the system is.
区块链应用可能带来工作效率低的问题。区块链技术成功解决了无信任世界里的共识形成问题,但以牺牲工作效率为代价,响应速度与容量远远低于现有的中心化系统。达成区块共识,需要经历竞争-验证-同步-竞争的循环过程,竞争即要求区块链上的节点付出成本进行自证以获取记账权, 验证是执行校验反馈确认信息可信;同步更新本地数据副本,整个过程相当繁琐耗时。对于信息传送时效性要求极高的军事领域,目前的区块链技术面临性能的瓶颈。当前主流区块链技术每秒钟的吞度量大概从几个到几百个,数据写入区块链,最少需要 10 分钟,所有节点都同步数据,则需要花费更多的时间。当前区块链技术的性能与现有主流中心化应用能够达到的毫秒级响应速度及每秒万级的处理容量相差甚远,难以满足军事领域的特殊战指标要求。
Block chain applications may cause inefficiencies. Block chain technology successfully solves the problem of consensus-building in a non-trusted world, but the response speed and capacity are much lower than the existing centralization system at the expense of efficiency. Block consensus requires a cycle of competition-verification-synchronous-competition, which requires self-certification of nodes in the block chain at a cost of 10 minutes to obtain rights to account, validation is the verification of reliable information by implementing calibration feedback; the process is quite cumbersome and time-consuming. In military areas where the time frame for transmitting information is very high, the current block chain technology faces bottlenecks in performance.
区块链应用面临新旧体系能否兼容的问题。在现有的中心化体系下, 区块链技术融入军事体系还存在兼容问题。开发一种区块链应用系统,并挂载到现有的军事体系中,区块链系统能否发挥效能,取决于两个因素:一是去看链系统与现有军事体系是否兼容,并形成局部与整体的协作关系, 如区块链系统与现有军事体系完成接口对接、指令响应及信息传递情况;二是区块链系统对现有军事体系的能力提升情况,如补齐现有体系的短板。在中心化的军事体系中,完成去中心化区块链系统的部署,需要解决两种不同理念的互斥难题,面临的是结构性矛盾和体制性障碍,即便能够实现二者的兼容与协作,但军事体系整体性能的提升还需要依赖各要素之间的无缝链接和紧密协作。
There are also problems with the compatibility of block chain technology with the military system under the existing centralization system. Developing a block chain application system and uploading it into the existing military system, the effectiveness of the block chain system depends on two factors: first, the compatibility of the chain system with the existing military system and its partial and integral collaboration, such as the interface between the sector chain system and the existing military system, the response to instructions and the transmission of information; and, second, the upgrading of the capability of the block chain system with the existing military system, such as the completion of the short slate of the existing system. In the centralized military system, the completion of the deployment of the decentralized block chain system will require the resolution of the dilemma of two different concepts, structural contradictions and institutional obstacles, and even if the compatibility of the two can be achieved, the overall upgrading of the military system will depend on seamless links and close collaboration between the various elements.
区块链技术向军事领域的全面渗透,将在一定程度上改变未来的战争形态和作战样式,甚至影响战争胜负。目前区块链技术在军事领域中的运用还处于探索阶段,重大项目还未落地,但是它一旦成功应用于军事领域, 必将超越传统的军事管理体系,引发军队建设和作战方式的革命性变化。
The full penetration of block-chain technology into the military sphere will, to some extent, change the future pattern and pattern of warfare, and even affect its success. The current application of block-chain technology in the military sphere is still at an exploratory stage, and major projects have not yet been reached, but if successfully applied in the military sphere, it will go beyond the traditional system of military administration and trigger revolutionary changes in the way military construction and warfare are conducted.
注册有任何问题请添加 微信:MVIP619 拉你进入群
打开微信扫一扫
添加客服
进入交流群
发表评论